Distinct roles for the two Rho GDP/GTP exchange factor domains of kalirin in regulation of neurite growth and neuronal morphology.
نویسندگان
چکیده
The actin cytoskeleton, essential for neuronal development, is regulated in part by small GTP binding proteins of the Rho subfamily. Kalirin-9, with two Rho subfamily-specific GDP/GTP exchange factor (GEF) domains, localizes to neurites and growth cones of primary cortical neurons. Kalirin-9 overexpression in cultured cortical neurons induces longer neurites and altered neuronal morphology. Expression of the first GEF domain alone results in drastically shortened axons and excessive growth cones, mediated by Rac1. Expression of the second GEF domain alone induces axonal over-elongation and abundant filopodial neurites, mediated by RhoA. Coordination of the actions of the individual GEF domains through their presence in Kalirin-9, with its Sec14p, spectrin, and Src homology domain 3 motifs, is essential for regulating neurite extension and neuronal morphology.
منابع مشابه
Critical role for Kalirin in nerve growth factor signaling through TrkA.
Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin bin...
متن کاملIdentification of a Novel, Putative Rho-specific GDP/GTP Exchange Factor and a RhoA-binding Protein: Control of Neuronal Morphology
The small GTP-binding protein Rho has been implicated in the control of neuronal morphology. In N1E-115 neuronal cells, the Rho-inactivating C3 toxin stimulates neurite outgrowth and prevents actomyosin-based neurite retraction and cell rounding induced by lysophosphatidic acid (LPA), sphingosine-1-phosphate, or thrombin acting on their cognate G protein-coupled receptors. We have identified a ...
متن کاملAn isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction.
Communication between membranes and the actin cytoskeleton is an important aspect of neuronal function. Regulators of actin cytoskeletal dynamics include the Rho-like small GTP-binding proteins and their exchange factors. Kalirin is a brain-specific protein, first identified through its interaction with peptidylglycine-alpha-amidating monooxygenase. In this study, we cloned rat Kalirin-7, a 7-k...
متن کاملKalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching.
Proteins derived from the Kalrn gene, encoding 2 Rho guanine nucleotide exchange factor (GEF) domains, affect dendritic and axonal morphogenesis. The roles of endogenous Kalirin-9 (Kal9) and Kalirin-12 (Kal12), the Kalrn isoforms expressed before synaptogenesis, have not been studied in neurite growth and maturation during early development. The Caenorhabditis elegans and Drosophila melanogaste...
متن کاملKalirin, a multifunctional Rho guanine nucleotide exchange factor, is necessary for maintenance of hippocampal pyramidal neuron dendrites and dendritic spines.
The structures of dendritic spines and the dendritic tree, key determinants of neuronal function, are regulated by diverse inputs that affect many scaffolding and signaling molecules. Nevertheless, here we show that reduced expression of a single gene results in loss of dendritic spines and a decrease in dendritic complexity. Kalirin, a dual Rho GDP-GTP exchange factor, causes spine formation w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 21 شماره
صفحات -
تاریخ انتشار 2001